
Getting started to communicate with the Checkbox for a developer is the scope for this document.
How a connection is setup, how to use and configure the Checkbox in order to get started.

Checkbox Connection

Configuring the Communication
Optional Checkbox Bridge

POS GraphQl endpoint

Connection Setup and Status
Introspection
Pos Mutations

AC GraphQl Endpoint

Connection Setup
Introspection
Queries
Mutations

Emulator

Connection Setup

SDK

.Net Core Sdk

Helping Tools

Postman

Checkbox Developer
Manual

This Chapter will explain how a checkbox needs to be connected physically, and how you can get a
status out of it to check if everything works well.

Checkbox Connection

Checkbox Connection

The Checkbox needs to be powered, powering is done by an USB-C cable. In the box there is an
adapter (1) and a power cable (2) available to use.

In order to be able to cmmunicate with the Checkbox, there is a network connection needed. To
achieve this there are 2 options.

1. Ethernet Connection with a standard network cable (RJ45)
2. A Wi-Fi connection

Configuring the Communication
Physical Connections to the Checkbox

Power

Network Connection

https://bookstack.jarvis81.synology.me/uploads/images/gallery/2025-05/0Dkimage.png
https://bookstack.jarvis81.synology.me/uploads/images/gallery/2025-05/lhTimage.png

(1) is the USB power connector
(2) is the Ethernet connector
(3) is the Multifunctional Button

The first time you want to connect to the Checkbox, you will have to use a network cable. By
default the DHCP is enabled.
once there is a connection available with internet connectivity, you have multiple ways to setup
your connection

You can login to the Tools backend, as a developer you should have an account in order to set all
the settings to the Checkbox, and view its status, whereabouts, historical data, etc.

The checkbox is equipped with a GraphQl endpoint where you can talk to, that endpoint is
explained further down this document. One of the things you can achieve there is changing the
network configuration, setting the Wifi credentials, and so on.

Once a checkbox receives an address, Whether it is configured manually or it is retrieved by means
of DHCP there are a few ways to get to know the actual IP-address of the Checkbox, This is needed
in order to communicate with the Checkbox

Network Settings Configuration

1. The Checkbox Tools Backend

2. The Admin Console GraphQl endpoint

Finding the network address

1. The Network information on the devices detail page

2. Bonjour Service Scanning

https://bookstack.jarvis81.synology.me/uploads/images/gallery/2025-05/scaled-1680-/nsmimage.png

A Checkbox is advertising on the bonjour service with its ID in the Name

If you are on the same LAN as the Checkbox, there is another method to find the IP or even access
the device at runtime.

Instead of using the ip address, you can also use the hostname of the device. The hostname is
comprised out of the Identifier of the Checkbox followed by .local. You can see pinging to this
hostname below

Using the xxx.local dns method

c:\ping CBX01000003.local

https://bookstack.jarvis81.synology.me/uploads/images/gallery/2025-05/sBpimage.png

Pinging CBX01000003.local [192.168.68.107] with 32 bytes of data:

Reply from 192.168.68.107: bytes=32 time=1ms TTL=64

Reply from 192.168.68.107: bytes=32 time<1ms TTL=64

Reply from 192.168.68.107: bytes=32 time<1ms TTL=64

Reply from 192.168.68.107: bytes=32 time<1ms TTL=64

Ping statistics for 192.168.68.107:

 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

 Minimum = 0ms, Maximum = 1ms, Average = 0ms

Checkbox Connection

There is an optional possibility for a Checkbox to have a Bridge functionality activated. If this option
is activated, once the Checkbox is connected to the internet, you can send all communication to
the Bridge instead of the Checkbox directly.
The big benefit of this functionality is that you don't need a lot of configuration to be done on the
Pos side, you could just know the Identifier of the Checkbox and add an extra header in the Http
requests. The address of the bridge is always the same, whether you want to get to Chebox A, or
Checkbox B, you always send the request to the same endpoint with a different header.

The only thing that is important is if you use the Bridge you need 2 additional request headers

the Client key can be found in your developer account in Tools->Client Keys

If your account has rights to use the Bridge, you will be able to see the Api Keys for the Client over
here.

Bridge Url for the POS endpoint

Bridge Url for the AC endpoint

If the Checkbox doesn't have the option enabled, you will see this error

Optional Checkbox Bridge
Bridge Settings

checkbox-client-key: <YOUR CLIENT KEY>
checkbox-id: <CHECKBOX IDENTIFIER>

https://api.checkbox.be/bridge/v1/pos/graphql

https://api.checkbox.be/bridge/v1/ac/graphql

Bridge not allowed

{

 "errors": [

 {

 "message": "Checkbox is not allowed to use API",

 "extensions": {

 "code": "NOT_ALLLOWED"

 }

 }

]

}

The Checkbox is equipped with a GraphQl interface, this is the most important interface to be able
to communicate with the Checkbox and sign the events coming from a POS system

POS GraphQl endpoint

POS GraphQl endpoint

The transport protocol used to communicate with the Checkbox is HTTP

The choice of not using https i since it would over complicate things for a local network.

There is a way to setup a reverse proxy, where you can include https security if you need to go
over the internet for the connection.

http://<CHECKBOX ADDRESS>/graphql

CHECKBOX ADDRESS can be one of the following

Local IP address
Local hostname identifier.local
Bridge hostname

The first thing you need to know is that this GraphQl endpoint is secured with a bearer token. In
order for the box to react on the request, you will need to configure and send the Bearer token
inside the http header

The actual token can be found in several places

1. The label that is on the physical Checkbox
2. In the Checkbox Tools

Once you know how to setup the connection for your Checkbox, you can try a simple GraphQl
query in order to test if everything is working fine.

Connection Setup and Status
Transport Protocol

GraphQl Endpoint

Authorization

Authorization: Bearer <token>

Get the status from the POS endpoint

If you receive an answer from the Checkbox it means that everything is ok.

This is an example of a valid response

query Status {

 status(language: NL) {

 initialized

 device {

 fdmId

 fdmSwVersion

 fdmDateTime

 bufferCapacityUsed

 }

 }

}

{

 "data": {

 "status": {

 "initialized": true,

 "device": {

 "fdmId": "CBX01000003",

 "fdmSwVersion": "1.0.0",

 "fdmDateTime": "2025-05-31T15:57:34.672Z",

 "bufferCapacityUsed": 0

 }

 }

 }

}

POS GraphQl endpoint

A GraphQl interface can be queried for what it is able to do, what type of objects it needs, what
type it will return and so on, this is called the introspection of the endpoint.

Introspection

{"query":"

 query IntrospectionQuery {

 __schema {

 queryType { name }

 mutationType { name }

 subscriptionType { name }

 types {

 ...FullType

 }

 directives {

 name

 description

 locations

 args {

 ...InputValue

 }

 }

 }

 }

 fragment FullType on __Type {

 kind

 name

 description

 fields(includeDeprecated: true) {

 name

 description

 args {

 ...InputValue

 }

 type {

 ...TypeRef

 }

 isDeprecated

 deprecationReason

 }

 inputFields {

 ...InputValue

 }

 interfaces {

 ...TypeRef

 }

 enumValues(includeDeprecated: true) {

 name

 description

 isDeprecated

 deprecationReason

 }

 possibleTypes {

 ...TypeRef

 }

 }

 fragment InputValue on __InputValue {

 name

 description

 type { ...TypeRef }

 defaultValue

 }

 fragment TypeRef on __Type {

 kind

 name

 ofType {

 kind

 name

 ofType {

With this query you are able to fetch all the information needed to continue the development

 kind

 name

 ofType {

 kind

 name

 ofType {

 kind

 name

 ofType {

 kind

 name

 ofType {

 kind

 name

 ofType {

 kind

 name

 }

 }

 }

 }

 }

 }

 }

 }

 ","variables":{}}

POS GraphQl endpoint

The supported mutations by this endpoint are specified by SPF/FOD, so it is possible to look inside
their document to find the details, or you can use the introspection query in order to see what is
supported.

If you want to get started you can follow this example to create your first Work In mutation

Work In Mutation

Pos Mutations

https://www.checkbox.be/sdk-documentation/getting-started-without-the-sdk/

The Checkbox is equipped with a second GraphQl interface, this is the extra interface to be able to
communicate with the Checkbox in order to change settings, read FOD settings, fetch errors, and
so on.

AC GraphQl Endpoint

AC GraphQl Endpoint

The transport protocol used to communicate with the Checkbox is HTTP.

http://<CHECKBOX ADDRESS>/ac/graphql

CHECKBOX ADDRESS can be one of the following

Local IP address
Local hostname identifier.local
Bridge hostname

The AC does not need a special token for authorization.

Connection Setup
Transport Protocol

GraphQl Endpoint

Authorization

AC GraphQl Endpoint

A GraphQl interface can be queried for what it is able to do, what type of objects it needs, what
type it will return and so on, this is called the introspection of the endpoint.

Introspection

{"query":"

 query IntrospectionQuery {

 __schema {

 queryType { name }

 mutationType { name }

 subscriptionType { name }

 types {

 ...FullType

 }

 directives {

 name

 description

 locations

 args {

 ...InputValue

 }

 }

 }

 }

 fragment FullType on __Type {

 kind

 name

 description

 fields(includeDeprecated: true) {

 name

 description

 args {

 ...InputValue

 }

 type {

 ...TypeRef

 }

 isDeprecated

 deprecationReason

 }

 inputFields {

 ...InputValue

 }

 interfaces {

 ...TypeRef

 }

 enumValues(includeDeprecated: true) {

 name

 description

 isDeprecated

 deprecationReason

 }

 possibleTypes {

 ...TypeRef

 }

 }

 fragment InputValue on __InputValue {

 name

 description

 type { ...TypeRef }

 defaultValue

 }

 fragment TypeRef on __Type {

 kind

 name

 ofType {

 kind

 name

 ofType {

With this query you are able to fetch all the information needed to continue the development

 kind

 name

 ofType {

 kind

 name

 ofType {

 kind

 name

 ofType {

 kind

 name

 ofType {

 kind

 name

 ofType {

 kind

 name

 }

 }

 }

 }

 }

 }

 }

 }

 ","variables":{}}

AC GraphQl Endpoint

This query will fetch the most important data and internal settings from the Checkbox set by the
Checkbox or set by Fod.

The failed requests will return an array with requests to the FOD servers that were unable to be
delivered and what the rootcause was of the failure.

The Checkbox can buffer some messages to send to FOD, while they haven't been sent, they are in
the internal buffer, this is the way to read them out.

The Checkbox has a buffer where the sent messages are stored, with this query you are able to
read that buffer

Queries
Admin Infos

Failed Requests

Fod Buffer Messages

Fod Buffer Sent Messages

AC GraphQl Endpoint

With this mutation you are able to set the network settings to the Checkbox Device. As well as the
Wifi credentials.

This mutation allows the Ws Init Url to be set differently, this should only be done when instructed
by FOD. Since this is the starting point for their services.

The checkbox comes with preset Ntp servers in order to retrieve the time. There is a third server
that can be set in order if the other 2 are unavailable for some reason. That NTP server url can be
set with this mutation.

This mutation is manually fetching the NTP service in order to sync the time at this moment.

This mutation is manually fetching the Ws Query of the FOD server in order to fetch the settings,
execute the wanted queries, and so on.

This mutation will make the Checkbox do a reboot.

Mutations
Set Network Config

Set Ws Init

Set Ws Ntp 3

Sync Ntp

Call Ws Query

Do Reboot

If you don't have a physical Checkbox available, there is also an emulator available.

Emulator

Emulator

The transport protocol used to communicate with the Checkbox is HTTPS

https://api.checkbox.be/checkboxemulator/graphql

https://api.checkbox.be/checkboxemulator/ac/graphql

The emulator is secured with your API key, you can find this in the Tools backend, if you have Client
keys available, this key should be used in the header field checkbox-client-key.
In order to select the proper emulator you want to use, you need to provide a custom header with
the identifier of the emulator in a header field checkbox-id

Once you have these things in place, you can manipulate the emulator on the Tools platform.

Connection Setup
Transport Protocol

GraphQl Endpoint
POS Endpoint

AC Endpoint

Authorization

checkbox-client-key: <CLIENT-KEY>
checkbox-id: <EMULATOR IDENTIFIER>

There is an SDK available. This SDK can be used on 2 levels, the first level is the fact you don't
need to have any GraphQl knowledge, it is making an abstraction of the GraphQl interface, and
make the mutations and queries available in code to execute.

SDK

SDK

The .Net Core Sdk is available on Nuget,

It is a cross platform SDK, .Net Core is running on different hardware and different OS'es, it does
support Windows MacOS, Linux, Android, and iOS.

If you want to get started with the SDK, you can see a tutorial on this location

Getting Started with the SDK

.Net Core Sdk

https://www.checkbox.be/sdk-documentation/getting-started-with-the-sdk/

There are several tools that can help with the development to test requests

Helping Tools

Helping Tools

Postman is a tool that can be used to send requests, configure headers, add authentication,
visualize responses and so on.

Postman

